Urethral Reconstruction with Tissue-Engineered Human Amniotic Scaffold in Rabbit Urethral Injury Models

نویسندگان

  • Fuli Wang
  • Tao Liu
  • Lijun Yang
  • Geng Zhang
  • Heliang Liu
  • Xiaomin Yi
  • Xiaojian Yang
  • Tzu-yin Lin
  • Weijun Qin
  • Jianlin Yuan
چکیده

BACKGROUND Mitigating urethral injury remains a great challenge for urologists due to lack of ideal biomaterials for urethroplasty. The application of amniotic membranes (AM) over other synthetic materials make it a better potential source for urethral reconstruction. We separated the basement layer of AM to obtain denuded human amniotic scaffold (dHAS) and then inoculated primary rabbit urethral epithelial cells on the surface of dHAS to define whether this strategy minimize potential rejection and maximize the biocompatibility of human AM. MATERIAL/METHODS After the successful acquisition of dHAS from AM, cell-seeded dHAS were prepared and characterized. Both cell-seeded dHAS and acellular dHAS were subcutaneously implanted. Immune responses were compared by histological evaluation and CD4 cell and CD8 cell infiltrations. Then they were applied as urethroplastic materials in the rabbit models of urethral injury to fully explore the feasibility and efficacy of tissue-engineered dHAS xenografts in urethral substitution application. RESULTS Mild inflammatory infiltration was observed in cell-seeded dHAS grafts, as revealed by fewer accumulations of CD4 cells and CD8 cells (or neutrophils or other immune cells). Urethral defects of rabbits in the urethroplastic group with dHAS implantation (n=6) were completely resolved in one month, while there were one infection and one fistula in the control group with acellular dHAS patches (n=6). Histopathological analysis revealed mild immune response in cell-seeded dHAS group (P<0.05). CONCLUSIONS Tissue-engineered dHAS minimize potential rejection and maximize the biocompatibility of AM, which makes it a potential ideal xenograft for urethral reconstruction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue Engineering for Human Urethral Reconstruction: Systematic Review of Recent Literature

BACKGROUND Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are considered, such as ex vivo engineered constructs. PURPOSE To review recent literature on tissue engineer...

متن کامل

Electrospun Poly(l-lactide)/Poly(ethylene glycol) Scaffolds Seeded with Human Amniotic Mesenchymal Stem Cells for Urethral Epithelium Repair

Tissue engineering-based urethral replacement holds potential for repairing large segmental urethral defects, which remains a great challenge at present. This study aims to explore the potential of combining biodegradable poly(l-lactide) (PLLA)/poly(ethylene glycol) (PEG) scaffolds and human amniotic mesenchymal cells (hAMSCs) for repairing urethral defects. PLLA/PEG fibrous scaffolds with vari...

متن کامل

Urethroplasty Using Autologous Urethral Tissue-embedded Acellular Porcine Bladder Submucosa Matrix Grafts for the Management of Long-Segment Urethral Stricture in a Rabbit Model

We conducted this study to evaluate the combined effect of acellular bladder submucosa matrix (BSM) and autologous urethral tissue for the treatment of long segment urethral stricture in a rabbit model. To prepare the BSM, porcine bladder submucosa was processed, decellularized, configured into a sheet-like shape, and sterilized. Twenty rabbits were randomized to normal control, urethral strict...

متن کامل

Preliminary experimental study of urethral reconstruction with tissue engineering and RNA interference techniques.

This study investigated the feasibility of replacing urinary epithelial cells with oral keratinocytes and transforming growth factor-β1 (TGF-β1) small interfering RNA (siRNA)-transfected fibroblasts seeded on bladder acellular matrix graft (BAMG) in order to reconstruct tissue-engineered urethra. Constructed siRNAs, which expressed plasmids targeting TGF-β1, were transfected into rabbit fibrobl...

متن کامل

Tissue engineering in urethral reconstruction--an update.

The field of tissue engineering is rapidly progressing. Much work has gone into developing a tissue engineered urethral graft. Current grafts, when long, can create initial donor site morbidity. In this article, we evaluate the progress made in finding a tissue engineered substitute for the human urethra. Researchers have investigated cell-free and cell-seeded grafts. We discuss different appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2014